Properties

Label 1296.879.4.e1.b1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_{18}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ab^{3}, d^{6}, c, d^{9}, b^{4}, d^{14}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6^2.D_{18}$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_6^3.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^4.S_3^2$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$\operatorname{res}(S)$$C_{18}:C_6\times S_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$S_3\times D_9$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6^2.D_{18}$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_6^2:D_9$
Maximal under-subgroups:$C_3^2:C_{18}$$C_3^2:D_9$$C_3^2:D_9$$C_3^2:D_6$$C_3\times D_{18}$$C_3\times D_{18}$
Autjugate subgroups:1296.879.4.e1.a11296.879.4.e1.c11296.879.4.e1.d1

Other information

Möbius function$0$
Projective image$C_3^2:(C_4\times D_9)$