Properties

Label 1296.813.2.a1.b1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^2:D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ad, c^{3}, c, b^{3}d, d^{4}, d^{6}, b^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $(C_3\times C_{12}):D_{18}$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_9).C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^4.C_3.C_2^3$
$\card{\operatorname{res}(S)}$\(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times C_3^2:D_{18}$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_3\times C_{12}):D_{18}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$(C_3\times C_{12}):D_{18}$
Maximal under-subgroups:$C_2\times C_3^2:C_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$S_3\times D_{18}$$C_6:S_3^2$
Autjugate subgroups:1296.813.2.a1.a1

Other information

Möbius function$-1$
Projective image$C_2\times C_3^2:D_{18}$