Properties

Label 1296.3494.2.b1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\wr C_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 1 & 2 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 1 & 2 & 0 & 2 \\ 1 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 2 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_3^3:C_6$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^3:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3\wr C_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$S_3^3:C_6$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$S_3^3:C_6$
Maximal under-subgroups:$C_3^3:A_4$$S_3^3$$C_3^3:C_6$$C_2\times A_4$
Autjugate subgroups:1296.3494.2.b1.b1

Other information

Möbius function$-1$
Projective image$S_3^3:C_6$