Properties

Label 1296.3432.6.l1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, e^{2}, d, e^{3}, b^{4}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\ASL(2,3).D_6^2.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_2^4.\SL(3,3)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\operatorname{res}(S)$$\GL(2,3).C_2^6$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_6:S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6^2.D_6$
Normal closure:$C_2\times C_3^3:C_{12}$
Core:$C_3\times C_6^2$
Minimal over-subgroups:$C_2\times C_3^3:C_{12}$$C_6^2.D_6$
Maximal under-subgroups:$C_3\times C_6^2$$C_3^2:C_{12}$$C_3^2:C_{12}$$C_6:C_{12}$$C_6.D_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^4:C_2^3$