Properties

Label 1296.3362.4.c1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_6$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}b^{11}, d^{2}, c, b^{6}, a^{2}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $C_3^3.(C_2^2\times \GL(3,3))$, of order \(1213056\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 13 \)
$\operatorname{res}(S)$$\GL(2,3).C_2^6$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6^2.S_3^2$
Complements:$C_2^2$
Minimal over-subgroups:$C_3^4:C_2^3$$C_3^3:D_{12}$
Maximal under-subgroups:$C_3^3\times C_6$$C_3^3:C_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$C_6:S_3^2$