Properties

Label 1296.3362.2.c1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_3^2:C_{12}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, c, b^{6}, d^{3}, d^{2}, a^{2}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $C_3^2.Q_8^2.D_6^2.C_2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_6:S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^2.S_3^2$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_6^2.S_3^2$
Maximal under-subgroups:$C_3^2\times C_6^2$$C_3^3:C_{12}$$C_6^2.C_6$$C_6^2.C_6$$C_6.C_6^2$$C_6^2.C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3:S_3^2$