Subgroup ($H$) information
| Description: | $C_3^2:D_6$ | 
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $a^{3}b^{11}, d^{2}, d^{3}, a^{2}, b^{4}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_6^2.S_3^2$ | 
| Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\PSU(3,2).C_6^2.C_2^6$ | 
| $\operatorname{Aut}(H)$ | $C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| $\operatorname{res}(S)$ | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $W$ | $C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $48$ | 
| Number of conjugacy classes in this autjugacy class | $8$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^2:D_{12}$ | 
