Properties

Label 1296.3190.4.b1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times C_3^3$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}, c^{4}, d, c^{6}, a^{2}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6.S_3^3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^2\times \SL(3,3)\times S_3$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3^2\times C_6$
Normalizer:$C_6.S_3^3$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_3^4:C_2^3$$C_3^3:D_{12}$$C_3^3:D_{12}$
Maximal under-subgroups:$C_3^3\times C_6$$S_3\times C_3^3$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3\times C_6^2$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$

Other information

Möbius function$2$
Projective image$S_3^3$