Properties

Label 1296.2960.27.d1
Order $ 2^{4} \cdot 3 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:A_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ac^{2}e^{2}, e^{3}, bc^{3}, c^{3}, d^{3}e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^2.A_4^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_3^4.S_3^3.C_2$
$\operatorname{Aut}(H)$ $\AGammaL(2,4)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(S)$$\POPlus(4,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(54\)\(\medspace = 2 \cdot 3^{3} \)
$W$$C_2^2:A_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_6^2:A_4$
Normal closure:$C_2^4:C_3^2$
Core:$C_2^4$
Minimal over-subgroups:$C_2^4:C_3^2$$C_2^4:C_3^2$
Maximal under-subgroups:$C_2^4$$A_4$$A_4$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$0$
Projective image$C_3^2.A_4^2$