Properties

Label 1296.2922.9.d1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, d^{2}, b^{6}, b^{9}, c, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$C_6^2.D_6$
Core:$C_6\times D_6$
Minimal over-subgroups:$C_6^2.D_6$$C_6^2:D_6$
Maximal under-subgroups:$C_6\times D_6$$S_3\times D_6$$C_6.D_6$$D_6:S_3$$C_3:D_{12}$$C_6\wr C_2$$C_6^2:C_2$$C_6:D_4$$S_3\times D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_6^2.S_3^2$