Subgroup ($H$) information
Description: | $C_3^2.S_4$ |
Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$a^{3}b^{13}, d^{3}, cd^{3}, b^{8}, d^{2}, b^{6}$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^2.S_3^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_3^4.(S_3\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | $C_6^2.S_3^2$ |