Properties

Label 1296.2922.6.e1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2.S_4$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{3}b^{13}, d^{3}, cd^{3}, b^{8}, d^{2}, b^{6}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_3^4.(S_3\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2.S_3^2$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_3^3.S_4$$C_6^2.D_6$
Maximal under-subgroups:$C_3^2.A_4$$C_6^2:C_2$$C_2^2:D_9$$C_2^2:D_9$$C_3:D_9$

Other information

Möbius function$1$
Projective image$C_6^2.S_3^2$