Subgroup ($H$) information
Description: | $C_3\times S_3^2$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a^{3}, d^{2}, b^{9}d^{3}, a^{2}, b^{6}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_6^2.S_3^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
$\operatorname{res}(S)$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $6$ |
Möbius function | $0$ |
Projective image | $C_6^2.S_3^2$ |