Subgroup ($H$) information
Description: | $C_2\times C_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$c, d^{3}, d^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_6^2.S_3^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_{18}:C_6$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Automorphism Group: | $C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Centralizer: | $C_3\times C_6^2$ | ||||
Normalizer: | $C_6^2.S_3^2$ | ||||
Complements: | $C_{18}:C_6$ | ||||
Minimal over-subgroups: | $C_6^2$ | $C_6^2$ | $C_2\times D_6$ | $C_3\times D_4$ | $C_3:D_4$ |
Maximal under-subgroups: | $C_6$ | $C_2^2$ |
Other information
Möbius function | $0$ |
Projective image | $C_6^2.S_3^2$ |