Properties

Label 1296.2922.108.b1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c, d^{3}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_{18}:C_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6^2$
Normalizer:$C_6^2.S_3^2$
Complements:$C_{18}:C_6$
Minimal over-subgroups:$C_6^2$$C_6^2$$C_2\times D_6$$C_3\times D_4$$C_3:D_4$
Maximal under-subgroups:$C_6$$C_2^2$

Other information

Möbius function$0$
Projective image$C_6^2.S_3^2$