Properties

Label 1284.8.6.a1.a1
Order $ 2 \cdot 107 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{214}$
Order: \(214\)\(\medspace = 2 \cdot 107 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(214\)\(\medspace = 2 \cdot 107 \)
Generators: $b^{321}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 2,107$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $S_3\times C_{214}$
Order: \(1284\)\(\medspace = 2^{2} \cdot 3 \cdot 107 \)
Exponent: \(642\)\(\medspace = 2 \cdot 3 \cdot 107 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_{106}$, of order \(1272\)\(\medspace = 2^{3} \cdot 3 \cdot 53 \)
$\operatorname{Aut}(H)$ $C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$S_3\times C_{214}$
Normalizer:$S_3\times C_{214}$
Complements:$S_3$ $S_3$
Minimal over-subgroups:$C_{642}$$C_2\times C_{214}$
Maximal under-subgroups:$C_{107}$$C_2$

Other information

Möbius function$3$
Projective image$S_3$