Properties

Label 1284.10.12.a1.a1
Order $ 107 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{107}$
Order: \(107\)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(107\)
Generators: $b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $107$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2\times C_{642}$
Order: \(1284\)\(\medspace = 2^{2} \cdot 3 \cdot 107 \)
Exponent: \(642\)\(\medspace = 2 \cdot 3 \cdot 107 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_{106}$, of order \(1272\)\(\medspace = 2^{3} \cdot 3 \cdot 53 \)
$\operatorname{Aut}(H)$ $C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{106}$, of order \(106\)\(\medspace = 2 \cdot 53 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{642}$
Normalizer:$C_2\times C_{642}$
Complements:$C_2\times C_6$
Minimal over-subgroups:$C_{321}$$C_{214}$$C_{214}$$C_{214}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-2$
Projective image$C_2\times C_6$