Properties

Label 1280.1116446.2.a1
Order $ 2^{7} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6:C_{10}$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Index: \(2\)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,3)(8,10), (1,3)(2,6)(4,7)(5,9)(8,10)(12,14), (1,4,8,5,2)(3,7,10,9,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^6:D_{10}$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{16}.C_2^4.C_2^3$
$\operatorname{Aut}(H)$ $F_{16}.C_4\times \PSL(2,7)$
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times F_{16}:C_4$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^4:D_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^6:D_{10}$
Complements:$C_2$
Minimal over-subgroups:$C_2^6:D_{10}$
Maximal under-subgroups:$C_2^5:C_{10}$$C_2^5:C_{10}$$C_2^5:C_{10}$$C_2^7$$C_2^2\times C_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2\wr D_5$