Properties

Label 1280.1116308.128.B
Order $ 2 \cdot 5 $
Index $ 2^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(128\)\(\medspace = 2^{7} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 19 & 20 \\ 20 & 31 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $F_5\times C_2^6$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^5\times C_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^6.C_2^5.\GL(5,2)$, of order \(20478689280\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
Outer Automorphisms: $C_2^6.C_2^5.\GL(5,2)$, of order \(20478689280\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.\GL(6,2)\times F_5$
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20478689280\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$F_5\times C_2^6$
Complements:$C_2^5\times C_4$
Minimal over-subgroups:$D_{10}$$D_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$63$
Number of conjugacy classes in this autjugacy class$63$
Möbius function$0$
Projective image$F_5\times C_2^6$