Properties

Label 1280.1116308.10.B
Order $ 2^{7} $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^7$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 31 & 20 \\ 30 & 1 \end{array}\right), \left(\begin{array}{rr} 39 & 0 \\ 0 & 39 \end{array}\right), \left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 20 \\ 20 & 31 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $F_5\times C_2^6$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.\GL(6,2)\times F_5$
$\operatorname{Aut}(H)$ $\GL(7,2)$, of order \(163849992929280\)\(\medspace = 2^{21} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127 \)
$\card{\operatorname{res}(S)}$\(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^6\times C_4$
Normalizer:$C_2^6\times C_4$
Normal closure:$C_2^6\times D_5$
Core:$C_2^6$
Minimal over-subgroups:$C_2^6\times D_5$$C_2^6\times C_4$
Maximal under-subgroups:$C_2^6$$C_2^6$$C_2^6$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$F_5$