Properties

Label 128.994.4.d1.a1
Order $ 2^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Generators: $\left(\begin{array}{rr} 47 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 28 & 0 \\ 0 & 52 \end{array}\right), \left(\begin{array}{rr} 75 & 0 \\ 0 & 22 \end{array}\right), \left(\begin{array}{rr} 96 & 0 \\ 0 & 96 \end{array}\right), \left(\begin{array}{rr} 85 & 0 \\ 0 & 8 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $D_{32}:C_2$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_{32}:C_8$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{32}$
Normalizer:$D_{32}:C_2$
Minimal over-subgroups:$C_2\times C_{32}$$D_{32}$$Q_{64}$
Maximal under-subgroups:$C_{16}$

Other information

Möbius function$2$
Projective image$C_2\times D_{16}$