Properties

Label 128.930.4.b1.a1
Order $ 2^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab, b^{2}c^{2}, c^{3}d^{2}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_4^2.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_4^2.D_4$
Minimal over-subgroups:$D_4:D_4$$C_2^3.D_4$$C_2^3.D_4$
Maximal under-subgroups:$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$D_4:C_2$$D_4:C_2$$C_2\times D_4$

Other information

Möbius function$2$
Projective image$C_2\wr C_2^2$