Properties

Label 128.927.4.i1.a1
Order $ 2^{5} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ac, b, c^{12}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4.D_8$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3.C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $D_4^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$D_4^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_4:D_4$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_8.D_4$
Normal closure:$C_8.D_4$
Core:$D_4:C_2$
Minimal over-subgroups:$C_8.D_4$
Maximal under-subgroups:$D_4:C_2$$C_2\times Q_8$$\OD_{16}$$\SD_{16}$$Q_{16}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4:D_4$