Subgroup ($H$) information
Description: | $\OD_{16}:C_2$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$b, c^{2}d, c^{4}d$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $D_4.D_8$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $4$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^3.C_2^3$, of order \(512\)\(\medspace = 2^{9} \) |
$\operatorname{Aut}(H)$ | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Centralizer: | $C_8$ | ||||
Normalizer: | $D_4.D_8$ | ||||
Minimal over-subgroups: | $D_4.D_4$ | $C_8.D_4$ | $\OD_{32}:C_2$ | ||
Maximal under-subgroups: | $D_4:C_2$ | $C_2\times C_8$ | $\OD_{16}$ | $C_2\times C_8$ | $\OD_{16}$ |
Other information
Möbius function | $2$ |
Projective image | $D_4:D_4$ |