Properties

Label 128.925.16.s1.a1
Order $ 2^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab, c^{12}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $D_4.D_8$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3.C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$D_4$
Normalizer:$D_4.D_4$
Normal closure:$Q_{16}$
Core:$C_4$
Minimal over-subgroups:$Q_{16}$$C_2\times Q_8$$D_4:C_2$$C_2\times Q_8$$\SD_{16}$$Q_{16}$$Q_{16}$
Maximal under-subgroups:$C_4$$C_4$
Autjugate subgroups:128.925.16.s1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4:D_4$