Subgroup ($H$) information
Description: | $C_4\wr C_2$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\left(\begin{array}{rr}
1 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 4
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 16
\end{array}\right), \left(\begin{array}{rr}
16 & 0 \\
0 & 16
\end{array}\right), \left(\begin{array}{rr}
0 & 9 \\
9 & 0
\end{array}\right)$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_{16}.D_4$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \) |
$\operatorname{Aut}(H)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
$\operatorname{res}(S)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_{16}$ | ||
Normalizer: | $C_{16}.D_4$ | ||
Minimal over-subgroups: | $D_8:C_4$ | ||
Maximal under-subgroups: | $D_4:C_2$ | $C_4^2$ | $\OD_{16}$ |
Autjugate subgroups: | 128.902.4.a1.a1 |
Other information
Möbius function | $0$ |
Projective image | $C_4\times D_4$ |