Properties

Label 128.850.8.i1.a1
Order $ 2^{4} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(2,6)(4,7)(5,8), (1,4)(2,5)(3,7)(6,8), (2,5)(3,7)(9,10), (2,5)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^5:C_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_4^2$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{Aut}(H)$ $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^5:C_4$
Minimal over-subgroups:$C_2^2\times D_4$$C_2^2\wr C_2$$C_2^3:C_4$
Maximal under-subgroups:$C_2^3$$C_2^3$$C_2\times C_4$$D_4$

Other information

Möbius function$0$
Projective image$C_2^4:C_4$