Properties

Label 128.734.4.n1.a1
Order $ 2^{5} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \SD_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 7 & 2 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 13 & 6 \\ 15 & 7 \end{array}\right), \left(\begin{array}{rr} 5 & 8 \\ 12 & 13 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_8:C_2^3$
Normal closure:$C_8:C_2^3$
Core:$C_2\times Q_8$
Minimal over-subgroups:$C_8:C_2^3$
Maximal under-subgroups:$C_2\times Q_8$$C_2\times D_4$$C_2\times C_8$$\SD_{16}$$\SD_{16}$$\SD_{16}$$\SD_{16}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2^2\wr C_2$