Properties

Label 128.734.2.b1.a1
Order $ 2^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 13 & 10 \\ 4 & 3 \end{array}\right), \left(\begin{array}{rr} 7 & 6 \\ 1 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 8 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 5 & 8 \\ 12 & 13 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_4^2:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^5.D_4^2$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2 . C_2^7$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2:D_4$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_4^2:D_4$
Maximal under-subgroups:$C_2^2\times D_4$$D_4:C_2^2$$C_4^2:C_2$$C_2^2\wr C_2$$C_2^2\wr C_2$$C_4:D_4$$C_4:D_4$$C_4:D_4$$C_4^2:C_2$

Other information

Möbius function$-1$
Projective image$C_2^2\wr C_2$