Properties

Label 128.2216.32.t1
Order $ 2^{2} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(2\)
Generators: $\langle(1,2)(3,5)(4,6)(7,8)(9,11)(10,12), (1,4)(2,6)(3,7)(5,8)(9,11)(10,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 32T425.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.D_4^2$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^5$
Normal closure:$C_2^3$
Core:$C_1$
Minimal over-subgroups:$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$D_4^2:C_2$