Properties

Label 128.2144.2.f1
Order $ 2^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{16}:C_2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(2\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 1 & 15 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 15 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{16}:C_2^3$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times D_8$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{16}:C_2^3$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_{16}:C_2^3$
Maximal under-subgroups:$C_2\times D_8$$D_8:C_2$$\OD_{32}$$D_{16}$$\SD_{32}$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$-1$
Projective image$C_2^2\times D_8$