Properties

Label 128.1948.2.a1.b1
Order $ 2^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4.D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(2\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b, cd$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4$
$\operatorname{Aut}(H)$ $D_4\times C_2^5$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2.D_4$
Complements:$C_2$
Minimal over-subgroups:$C_4^2.D_4$
Maximal under-subgroups:$D_4:C_2^2$$C_2^2:Q_8$$C_2^2:C_8$$C_2\times \SD_{16}$$D_4:C_4$$C_2\times Q_{16}$$Q_8:C_4$
Autjugate subgroups:128.1948.2.a1.a1128.1948.2.a1.c1128.1948.2.a1.d1

Other information

Möbius function$-1$
Projective image not computed