Properties

Label 128.1942.8.v1.a1
Order $ 2^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab, d$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_4^2.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2.C_2^2$
Normal closure:$C_4:Q_8$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_4:Q_8$$C_2^2:Q_8$$C_4\times Q_8$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed