Subgroup ($H$) information
Description: | $C_2\times C_8$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\left(\begin{array}{rr}
19 & 8 \\
4 & 27
\end{array}\right), \left(\begin{array}{rr}
31 & 0 \\
16 & 31
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $\OD_{16}:D_4$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^3$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(2\) |
Automorphism Group: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^6\times C_4).C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{W}$ | \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_2^2\times C_8$ | |||
Normalizer: | $\OD_{16}:D_4$ | |||
Minimal over-subgroups: | $C_2^2\times C_8$ | $C_2\times D_8$ | $C_2\times \SD_{16}$ | $C_8:C_4$ |
Maximal under-subgroups: | $C_2\times C_4$ | $C_8$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-8$ |
Projective image | not computed |