Properties

Label 128.1887.4.c1
Order $ 2^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 22 \\ 25 & 29 \end{array}\right), \left(\begin{array}{rr} 25 & 16 \\ 8 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\OD_{16}:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^6\times C_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$\OD_{16}:D_4$
Minimal over-subgroups:$C_4^2:C_2^2$$\OD_{16}:C_4$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2:C_4$$C_4:C_4$$C_4^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image not computed