Properties

Label 128.1883.16.d1
Order $ 2^{3} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $c^{2}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Frattini subgroup, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\OD_{16}:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Quotient group ($Q$) structure

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Automorphism Group: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^7:D_4$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2048\)\(\medspace = 2^{11} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times \OD_{16}$
Normalizer:$\OD_{16}:D_4$
Minimal over-subgroups:$C_2^2\times C_4$$C_2\times D_4$$C_2\times D_4$$C_4^2$$C_4^2$$C_2\times Q_8$$C_2\times C_8$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$64$
Projective image$C_2^2\times D_4$