Properties

Label 128.1839.4.e1.b1
Order $ 2^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $bd, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_4^2$
Normalizer:$C_4^2.D_4$
Minimal over-subgroups:$D_4.D_4$$C_4^2.C_4$$C_2^3.D_4$
Maximal under-subgroups:$C_2^2\times C_4$$C_2\times C_8$$C_2\times C_8$
Autjugate subgroups:128.1839.4.e1.a1

Other information

Möbius function$2$
Projective image$C_2^2\times D_4$