Properties

Label 127776.c.1056.A
Order $ 11^{2} $
Index $ 2^{5} \cdot 3 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2$
Order: \(121\)\(\medspace = 11^{2} \)
Index: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(11\)
Generators: $\left(\begin{array}{rrrr} 2 & 8 & 6 & 7 \\ 7 & 3 & 0 & 6 \\ 1 & 4 & 10 & 3 \\ 2 & 1 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 6 & 2 & 5 \\ 3 & 6 & 2 & 2 \\ 6 & 0 & 7 & 5 \\ 7 & 6 & 8 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^2.C_{24}:D_{22}$
Order: \(127776\)\(\medspace = 2^{5} \cdot 3 \cdot 11^{3} \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{24}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Automorphism Group: $C_{66}.C_{10}.C_2^5$
Outer Automorphisms: $C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{30}.C_5.C_2^6$
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$W$$D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{11}^2:C_{44}$
Normalizer:$C_{11}^2.C_{24}:D_{22}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{11}^2.C_{24}:D_{22}$