Properties

Label 1272.44.4.a1.d1
Order $ 2 \cdot 3 \cdot 53 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{318}$
Order: \(318\)\(\medspace = 2 \cdot 3 \cdot 53 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(318\)\(\medspace = 2 \cdot 3 \cdot 53 \)
Generators: $a, c^{212}, c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,53$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_2^2\times C_{318}$
Order: \(1272\)\(\medspace = 2^{3} \cdot 3 \cdot 53 \)
Exponent: \(318\)\(\medspace = 2 \cdot 3 \cdot 53 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{52}\times \PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2\times C_{52}$, of order \(104\)\(\medspace = 2^{3} \cdot 13 \)
$\operatorname{res}(S)$$C_2\times C_{52}$, of order \(104\)\(\medspace = 2^{3} \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{318}$
Normalizer:$C_2^2\times C_{318}$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2\times C_{318}$$C_2\times C_{318}$$C_2\times C_{318}$
Maximal under-subgroups:$C_{159}$$C_{106}$$C_6$
Autjugate subgroups:1272.44.4.a1.a11272.44.4.a1.b11272.44.4.a1.c11272.44.4.a1.e11272.44.4.a1.f11272.44.4.a1.g1

Other information

Möbius function$2$
Projective image$C_2^2$