Properties

Label 12706092.s.37044._.B
Order $ 7^{3} $
Index $ 2^{2} \cdot 3^{3} \cdot 7^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3$
Order: \(343\)\(\medspace = 7^{3} \)
Index: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(7\)
Generators: $eh^{4}i^{6}, gh^{6}i^{3}, fh^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_7^6.C_3^2.D_6$
Order: \(12706092\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{6} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_7^3:C_3^2:D_6$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Automorphism Group: $C_2\times C_7^3.\He_3.Q_8.C_6$
Outer Automorphisms: $C_2\times \SL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^6.\He_3.Q_8.C_6^2$
$\operatorname{Aut}(H)$ $\GL(3,7)$, of order \(33784128\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{3} \cdot 19 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed