Properties

Label 12656.c.6328.a1.a1
Order $ 2 $
Index $ 2^{3} \cdot 7 \cdot 113 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(6328\)\(\medspace = 2^{3} \cdot 7 \cdot 113 \)
Exponent: \(2\)
Generators: $a^{56}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $F_{113}$
Order: \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
Exponent: \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{113}$, of order \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{112}$
Normalizer:$C_{112}$
Normal closure:$D_{113}$
Core:$C_1$
Minimal over-subgroups:$D_{113}$$C_{14}$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$113$
Möbius function$0$
Projective image$F_{113}$