Properties

Label 12656.c.14.a1.a1
Order $ 2^{3} \cdot 113 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{113}:C_8$
Order: \(904\)\(\medspace = 2^{3} \cdot 113 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(904\)\(\medspace = 2^{3} \cdot 113 \)
Generators: $a^{14}, a^{28}, b, a^{56}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $F_{113}$
Order: \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
Exponent: \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{113}$, of order \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
$\operatorname{Aut}(H)$ $F_{113}$, of order \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)
$W$$F_{113}$, of order \(12656\)\(\medspace = 2^{4} \cdot 7 \cdot 113 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_{113}$
Minimal over-subgroups:$C_{113}:C_{56}$$C_{113}:C_{16}$
Maximal under-subgroups:$C_{113}:C_4$$C_8$

Other information

Möbius function$1$
Projective image$F_{113}$