Properties

Label 1260.58.180.a1.a1
Order $ 7 $
Index $ 2^{2} \cdot 3^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(7\)
Generators: $c^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{210}.S_3$
Order: \(1260\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_6.D_{15}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_{30}:C_{12}:\GL(2,3)$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
Outer Automorphisms: $\GL(2,3):C_2^2$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6\times \AGL(2,3)\times F_5$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{210}.S_3$
Normalizer:$C_{210}.S_3$
Complements:$C_6.D_{15}$
Minimal over-subgroups:$C_{35}$$C_{21}$$C_{21}$$C_{21}$$C_{21}$$C_{14}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_6.D_{15}$