Properties

Label 1248.959.16.b1
Order $ 2 \cdot 3 \cdot 13 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{13}$
Order: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Generators: $a, c^{52}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_4\times S_3\times C_{52}$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_4^2$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{12}\times C_2^4:C_3.D_4\times S_3$
$\operatorname{Aut}(H)$ $S_3\times C_{12}$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3\times C_{12}$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_4\times C_{52}$
Normalizer:$C_4\times S_3\times C_{52}$
Complements:$C_4^2$ $C_4^2$
Minimal over-subgroups:$S_3\times C_{26}$
Maximal under-subgroups:$C_{39}$$C_{26}$$S_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$S_3\times C_4^2$