Subgroup ($H$) information
| Description: | $C_{78}$ |
| Order: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
| Generators: |
$c^{78}, c^{12}, c^{52}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,13$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_4\times S_3\times C_{52}$ |
| Order: | \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
| Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2^2\times C_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Outer Automorphisms: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{12}\times C_2^4:C_3.D_4\times S_3$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_4\times C_{156}$ | |||
| Normalizer: | $C_4\times S_3\times C_{52}$ | |||
| Minimal over-subgroups: | $S_3\times C_{26}$ | $C_{156}$ | $C_3:C_{52}$ | $C_2\times C_{78}$ |
| Maximal under-subgroups: | $C_{39}$ | $C_{26}$ | $C_6$ |
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $C_4\times D_6$ |