Subgroup ($H$) information
Description: | $D_{13}$ |
Order: | \(26\)\(\medspace = 2 \cdot 13 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(26\)\(\medspace = 2 \cdot 13 \) |
Generators: |
$b^{2}c^{51}, c^{6}$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{78}:C_4^2$ |
Order: | \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_4\times C_{12}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2\times \GL(2,\mathbb{Z}/4)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Outer Automorphisms: | $C_2\times \GL(2,\mathbb{Z}/4)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{26}.(C_2^3\times C_6).C_2^4$ |
$\operatorname{Aut}(H)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\operatorname{res}(S)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(64\)\(\medspace = 2^{6} \) |
$W$ | $C_{13}:C_4$, of order \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Related subgroups
Centralizer: | $C_2\times C_{12}$ | ||
Normalizer: | $C_{78}:C_4^2$ | ||
Complements: | $C_4\times C_{12}$ | ||
Minimal over-subgroups: | $C_3\times D_{13}$ | $D_{26}$ | $D_{26}$ |
Maximal under-subgroups: | $C_{13}$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_{78}:C_4^2$ |