Properties

Label 1248.1282.48.c1
Order $ 2 \cdot 13 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{13}$
Order: \(26\)\(\medspace = 2 \cdot 13 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(26\)\(\medspace = 2 \cdot 13 \)
Generators: $b^{2}c^{51}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{78}:C_4^2$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_4\times C_{12}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times \GL(2,\mathbb{Z}/4)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2\times \GL(2,\mathbb{Z}/4)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{26}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$\operatorname{res}(S)$$F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_{13}:C_4$, of order \(52\)\(\medspace = 2^{2} \cdot 13 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_{78}:C_4^2$
Complements:$C_4\times C_{12}$
Minimal over-subgroups:$C_3\times D_{13}$$D_{26}$$D_{26}$
Maximal under-subgroups:$C_{13}$$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{78}:C_4^2$