Properties

Label 1248.1282.208.b1
Order $ 2 \cdot 3 $
Index $ 2^{4} \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $c^{39}, c^{26}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{78}:C_4^2$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{52}:C_4$
Order: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Automorphism Group: $D_4\times F_{13}$, of order \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Outer Automorphisms: $C_3\times D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{26}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{78}:C_4^2$
Normalizer:$C_{78}:C_4^2$
Complements:$C_{52}:C_4$
Minimal over-subgroups:$C_{78}$$C_2\times C_6$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{52}:C_4$