Properties

Label 124416.l.24.CX
Order $ 2^{6} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3,8,2)(4,5,11,7)(6,12)(9,10)(13,15,16,20,24,25)(14,17,19,22,26,28)(18,21,23,27,29,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2.S_4^2:C_6$
Order: \(124416\)\(\medspace = 2^{9} \cdot 3^{5} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_3^4.C_6.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$W$$D_7^3$, of order \(2744\)\(\medspace = 2^{3} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(D_6\times C_6^2):S_4$
Normal closure:$(C_2^2\times C_6^3):S_3^2$
Core:$C_2\times C_6^3$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^2.S_4^2:C_6$