Properties

Label 124416.bq.24.EM
Order $ 2^{6} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(S_3\times C_6^2):S_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,7,4)(8,10,14)(9,16,18)(11,15,17), (20,25)(21,26), (2,7,4)(3,12,13)(11,17,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3.S_4^2:C_2^3$
Order: \(124416\)\(\medspace = 2^{9} \cdot 3^{5} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_3^4.D_6.C_2^5$
$\operatorname{Aut}(H)$ $(C_2^2\times C_6^2).D_6^2$
$\card{W}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2^2\times C_6^2):D_6^2$
Normal closure:$(C_2\times C_6^3):S_3^2$
Core:$C_2\times C_6^3$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3.S_4^2:C_2^3$