Subgroup ($H$) information
| Description: | $(S_3\times C_6^2):S_4$ | 
| Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) | 
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\langle(1,2,5)(3,9,6)(4,8,10)(7,12,11)(13,22,19)(14,24,28)(15,25,23)(16,27,26) \!\cdots\! \rangle$ | 
| Derived length: | $3$ | 
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3^3.S_4^2:D_4$ | 
| Order: | \(124416\)\(\medspace = 2^{9} \cdot 3^{5} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_2^4.C_3^4.D_6.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $(C_2^2\times C_6^2).D_6^2$ | 
| $\card{W}$ | not computed | 
Related subgroups
| Centralizer: | not computed | 
| Normalizer: | not computed | 
| Normal closure: | not computed | 
| Core: | not computed | 
| Autjugate subgroups: | Subgroups are not computed up to automorphism. | 
Other information
| Number of subgroups in this conjugacy class | $12$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
