Properties

Label 12383472844800000000.a.72._.DQ
Order $ 2^{26} \cdot 3^{8} \cdot 5^{8} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5^8.C_4.C_2^4.C_2^4$
Order: \(171992678400000000\)\(\medspace = 2^{26} \cdot 3^{8} \cdot 5^{8} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Generators: $\langle(21,22,23,24,25), (6,9,10,7,8), (28,30,29), (13,15,14), (2,3)(4,5), (1,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and nonsolvable. Whether it is rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.C_2^6.A_4^2.C_4.C_2$
Order: \(12383472844800000000\)\(\medspace = 2^{29} \cdot 3^{10} \cdot 5^{8} \)
Exponent: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable. Whether it is rational has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(24766945689600000000\)\(\medspace = 2^{30} \cdot 3^{10} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ Group of order \(687970713600000000\)\(\medspace = 2^{28} \cdot 3^{8} \cdot 5^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$36$
Möbius function not computed
Projective image not computed