Properties

Label 12352.268.3088.a1.a1
Order $ 2^{2} $
Index $ 2^{4} \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{16}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $C_{193}:C_{64}$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{193}:C_{16}$
Order: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Automorphism Group: $C_{193}.C_{48}.C_4^2.C_2$
Outer Automorphisms: $C_2\times C_4\times C_{96}$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.\OD_{16}$, of order \(1185792\)\(\medspace = 2^{11} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{193}:C_{64}$
Normalizer:$C_{193}:C_{64}$
Minimal over-subgroups:$C_{772}$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$0$
Projective image$C_{193}:C_{16}$